【Team】 Uncertainty Quantification Team
【Date】2025/November/28(Friday) 18:00-19:00(JST)
【Speaker】Talk by Leo Andeol, University of Toulouse
Title: Conformal Object Detection by Sequential Risk Control
Abstract:
Recent advances in object detectors have led to their adoption for industrial uses. However, their deployment in safety-critical applications is hindered by the inherent lack of reliability of neural networks and the complex structure of object detection models. To address these challenges, we turn to Conformal Prediction, a post-hoc predictive uncertainty quantification procedure with statistical guarantees that are valid for any dataset size, without requiring prior knowledge on the model or data distribution.
Our contribution is manifold. First, we formally define the problem of Conformal Object Detection (COD). We introduce a novel method, Sequential Conformal Risk Control (SeqCRC), that extends the statistical guarantees of Conformal Risk Control to two sequential tasks with two parameters, as required in the COD setting. Then, we present old and new loss functions and prediction sets suited to applying SeqCRC to different cases and certification requirements. Finally, we present a conformal toolkit for replication and further exploration of our method. Using this toolkit, we perform extensive experiments that validate our approach and emphasize trade-offs and other practical consequences.