Doorkeeper

Deep Learning Theory Team Seminar (Talk by Leyang Wang, University College London).

2025-05-09(金)18:00 - 19:00 JST
オンライン リンクは参加者だけに表示されます。
申し込む

申し込み受付は終了しました

今後イベント情報を受け取る

参加費無料

詳細

This is an online seminar. Registration is required.

【Deep Learning Theory Team】
【Date】2025/May 9 (Fri) 18:00-19:00(JST)
【Speaker】Leyang Wang, University College London, Computer Science Department,Master student

Title: Differential Parameter Inference in Exponential Family using Time Score Matching

Abstract:
This work addresses differential inference in time-varying parametric probabilistic models, like graphical models with changing structures. Instead of estimating a high-dimensional model at each time and inferring changes later, we directly learn the differential parameter, i.e., the time derivative of the parameter. The main idea is treating the time score function of an exponential family model as a linear model of the differential parameter for direct estimation. We use time score matching to estimate parameter derivatives. We prove the consistency of a regularized score matching objective and demonstrate the finite-sample normality of a debiased estimator in high-dimensional settings. Two applications will be presented: one on learning differential graphical models and the other on guiding generative models with natural gradients. If time permits, an ongoing work on diffusion distillation using a variational approach will also be presented.

コミュニティについて

RIKEN AIP Public

RIKEN AIP Public

Public events of RIKEN Center for Advanced Intelligence Project (AIP)

メンバーになる