Doorkeeper

Deep Learning Theory Team Seminar(Talk by Razvan Lascu, Heriot-Watt University).

2024-12-23(月)17:00 - 18:00 JST
オンライン リンクは参加者だけに表示されます。
申し込む

申し込み受付は終了しました

今後イベント情報を受け取る

参加費無料

詳細

This is an online seminar. Registration is required.

【Team】Deep Learning Theory Team
【Date】2024/December/23(Mon) 17:00-18:00(JST)
【Speaker】Razvan Lascu, Heriot-Watt University
Title: Linear convergence of proximal descent schemes on the Wasserstein space

Abstract: We investigate proximal descent methods, inspired by the minimizing movement scheme introduced by Jordan, Kinderlehrer and Otto, for optimizing entropy regularized functionals on the Wasserstein space. We establish linear convergence under flat convexity assumptions, thereby relaxing the common reliance on geodesic convexity. Our analysis circumvents the need for discrete-time adaptations of the Evolution Variational Inequality (EVI). Instead, we leverage a uniform logarithmic Sobolev inequality (LSI) and the entropy “sandwich” lemma, extending the analysis from [Nitanda et al., 2022 - Convex Analysis of the Mean Field Langevin Dynamics] and [Chizat, 2022 - Mean-Field Langevin Dynamics : Exponential Convergence and Annealing] .

コミュニティについて

RIKEN AIP Public

RIKEN AIP Public

Public events of RIKEN Center for Advanced Intelligence Project (AIP)

メンバーになる