Doorkeeper

[37th AIP Open Seminar] Talks by Mathematical Analysis Team

2021-08-11(水)15:00 - 17:00 JST
オンライン リンクは参加者だけに表示されます。
申し込む

申し込み受付は終了しました

今後イベント情報を受け取る

参加費無料
-Time Zone:JST -The seats are available on a first-come-first-served basis. -When the seats are fully booked, we may stop accepting applications. -Simultaneous interpretation will not be available.

詳細

Mathematical Analysis Team (https://aip.riken.jp/labs/generic_tech/mathematical-analysis/) at RIKEN AIP

Speaker 1: Shin-ichi Ohta (15:00-15:40)
Title: A new transport distance on hypergraphs
Abstract:
I first briefly explain the activity of Mathematical Analysis Team. Then I talk about a recent work by Tomoya Akamatsu (Research Part-timer) on a new transport distance on hypergraphs. The construction of this transport distance was inspired by structured optimal transport by Alvarez-Melis et al, but is based on a different idea concentrating on capturing the structure of hyperedges. This transport distance turned out new also for usual graphs, and one can study the corresponding Ricci curvature a la Ollivier and Lin-Lu-Yau.

Speaker 2: Masayuki Aino (15:40-16:20)
Title: Self-tuning Laplacian eigenmaps and the conformal metric compatible with the measure
Abstract:
We introduce a theoretical analysis of the self-tuning Laplacian eigenmaps using k-NN graph and their spectral convergence to the Laplacian of the conformal metric compatible with the measure from which the sample points are taken.

Speaker 3: Taiji Marugame (16:20-17:00)
Title: The Bonnet theorem for statistical manifolds
Abstract:
In information geometry, spaces of probability distributions are endowed with a geometric structure called the statistical structure. A fundamental question in information geometry is when a statistical manifold can be embedded to a flat statistical manifold. An answer to this question was given by H. V. Le, who proved an analogue of the Nash embedding theorem for statistical manifolds. In this talk, as another embedding theorem, we present a Bonnet-type theorem which asserts that if a statistical manifold admits tensors satisfying the Gauss-Codazzi-Ricci equations, then it is locally embeddable to a flat statistical manifold with a fixed dimension.


All participants are required to agree with the AIP Open Seminar Series Code of Conduct.
Please see the URL below.
https://aip.riken.jp/event-list/termsofparticipation/?lang=en

RIKEN AIP will expect adherence to this code throughout the event. We expect cooperation from all participants to help ensure a safe environment for everybody.


コミュニティについて

RIKEN AIP Public

RIKEN AIP Public

Public events of RIKEN Center for Advanced Intelligence Project (AIP)

メンバーになる